The proximal promoter and the start site cooperate to specify correct U1 snRNA transcription initiation by RNA polymerase II.

نویسندگان

  • A Lescure
  • S Murgo
  • P Carbon
  • A Krol
چکیده

In this work, we attempted to gain insight into the detailed mechanism allowing correct transcription initiation of U1 snRNA genes by RNA polymerase II. Abolition of the CA motif residing at -1/+1 in the Xenopus U1 gene leads to a loss of the ability of the promoter to direct accurate initiation. A discrete site is selected only if a purine preceded by a pyrimidine is positioned at 58/57 bp downstream of the center of the PSE. The PSE alone is unable to designate a discrete initiation site. Rather, it serves to set the location of an initiation window without discriminating suitable from unsuitable initiation sites. The latter role is devoted to a PyPu sequence positioned at -1/+1. Therefore, it is the concomitant action of the PSE and an essential PyPu positioned at the proper distance from this promoter that specifies correct U1 snRNA transcription initiation by RNA polymerase II.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oct-1 and Oct-2 potentiate functional interactions of a transcription factor with the proximal sequence element of small nuclear RNA genes.

The promoters of both RNA polymerase II- and RNA polymerase III-transcribed small nuclear RNA (snRNA) genes contain an essential and highly conserved proximal sequence element (PSE) approximately 55 bp upstream from the transcription start site. In addition, the upstream enhancers of all snRNA genes contain binding sites for octamer-binding transcription factors (Octs), and functional studies h...

متن کامل

Cooperation between small nuclear RNA-activating protein complex (SNAPC) and TATA-box-binding protein antagonizes protein kinase CK2 inhibition of DNA binding by SNAPC.

Protein kinase CK2 regulates RNA polymerase III transcription of human U6 small nuclear RNA (snRNA) genes both negatively and positively depending upon whether the general transcription machinery or RNA polymerase III is preferentially phosphorylated. Human U1 snRNA genes share similar promoter architectures as that of U6 genes but are transcribed by RNA polymerase II. Herein, we report that CK...

متن کامل

Orientation-dependent transcriptional activator upstream of a human U2 snRNA gene.

We examined the structure of the promoter for the human U2 snRNA gene, a strong RNA polymerase II transcription unit without an obvious TATA box. A set of 5' deletions was constructed and assayed for the ability to direct initiation of U2 snRNA after microinjection into Xenopus oocytes. Sequences between positions -295 and -218 contain an activator element which stimulates accurate initiation b...

متن کامل

cis-acting elements required for RNA polymerase II and III transcription in the human U2 and U6 snRNA promoters.

Although the human U2 and U6 snRNA genes are transcribed by RNA polymerases II and III respectively, their promoters are remarkably similar in structure. Both promoters contain a proximal element and an enhancer region with an octamer motif. The U6 promoter contains in addition an A/T rich region that defines it as an RNA polymerase III promoter. We have examined in further detail the contribut...

متن کامل

The p53 tumor suppressor protein represses human snRNA gene transcription by RNA polymerases II and III independently of sequence-specific DNA binding.

Human U1 and U6 snRNA genes are transcribed by RNA polymerases II and III, respectively. While the p53 tumor suppressor protein is a general repressor of RNA polymerase III transcription, whether p53 regulates snRNA gene transcription by RNA polymerase II is uncertain. The data presented herein indicate that p53 is an effective repressor of snRNA gene transcription by both polymerases. Both U1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 20 7  شماره 

صفحات  -

تاریخ انتشار 1992